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Abstract

We investigate principal bundles over a root stack. In case of dimension one, we generalize the criterion
of Weil and Atiyah for a principal bundle to have an algebraic connection.
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0. Introduction

The notion of a parabolic vector bundle over a compact Riemann surface was first developed in
[18] to obtain a version of the theorem of Narasimhan–Seshadri [20], in the case where one wants
to describe the moduli space of unitary representations of the fundamental group of the surface
with a finite set of punctures. The extra structure one obtains is the data of a flag in the fibre and
a set of real numbers, called weights, at each of the punctures. When the weights are rational
numbers, parabolic vector bundles can be described as equivariant vector bundles on a suitable
Galois cover [5,10,21]. One drawback of this correspondence is that it requires introduction to a
new parameter, namely the Galois group for the covering. To remedy this, N. Borne has shown
that the category of parabolic vector bundles over a C-scheme with weights lying in 1

r
Z, with

r ∈ N, is equivalent to the category of vector bundles over a related object called the “r-th root
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stack” which depends only on the original scheme, the parabolic divisor and the natural number r

[11,12]. The root stack essentially gives the scheme some “orbifold structure,” by putting a cyclic
group of order r over the divisor. This approach of Borne for parabolic bundles has turned out to
be very useful (see, for example, [8]).

A coherent generalization of the notion of a parabolic structure for a principal bundle, even
over curves, has been somewhat elusive, largely because it has not been clear what the ana-
logue of a set of weights should be. The main aim of this paper is to advocate Borne’s approach
of viewing a parabolic bundle over a quasi-projective variety as a bundle over an associated
root stack. As such, the article begins by defining principal bundles over a smooth algebraic
stack over C and basic constructions, such as associated fibre bundles and reduction of structure
group.

One result of the paper, stated in Section 5, gives a condition for the existence of a connection
over a principal bundle over an algebraic stack in the style of [2]. To explain this condition, let
G be a reductive affine algebraic group over C. Let X = XOX(Z),s,r be a complete root stack of
dimension one. We prove that a principal G-bundle EG over X admits a connection if and only
if for any reduction F ⊂ EG to a Levi factor L of a parabolic subgroup of G, and any character
χ : L → C×, the associated line bundle F ×χ C satisfies degXM = 0. (See Theorem 5.1.)

In Section 2, we review the construction of a root stack as given in [14]. We show that in the
special case of the Galois covers considered in [5], where all isotropy groups are cyclic of the
same order, the associated root stack is in fact the quotient stack, and point out that in the case of
a curve, one always has such a realization.

Of course, justifying the root stack approach to parabolic structures necessitates a comparison
with existing approaches in the literature, and this is done in Sections 6 and 7. In his characteri-
zation of finite vector bundles [22], M.V. Nori gave a realization of a principal G-bundle over a
scheme over an arbitrary field as a tensor functor from the category of finite-dimensional repre-
sentations of G to the category of vector bundles over the scheme. One approach that has been
taken is that of [3], where a parabolic principal bundle was defined as a tensor functor which
takes values in the category of parabolic vector bundles. Section 6 is concerned with showing
that this notion and that of a principal bundle over a root stack are equivalent.

A notion which has appeared in the literature recently (e.g., [23,16]) is that of a (torsor for a)
parahoric Bruhat–Tits group scheme. The specific instances of this phenomenon which are rele-
vant for us appear in a paper of V. Balaji and C.S. Seshadri [4], where such a torsor is generically
a G-bundle. They show that equivariant G-bundles for a Galois cover correspond to parahoric
torsors on the base. In their description, it is the isotropy representation (in G) over the ramifica-
tion points of the Galois cover which determines the appropriate Bruhat–Tits group scheme (i.e.,
the analogue of the flag type for parabolic vector bundles). Such representations may be thought
of as restrictions of cocharacters of the cover, and hence as rational cocharacters on the base. It is
this that yields the analogous notion of a set of weights for parabolic bundle/parahoric torsor (see
Section 7.2). This was already suggested by P. Boalch in his local classification of connections
on G-bundles for reductive groups [9]. The aim of Section 7 is to show that these ideas are all
readily expressible in terms of principal bundles over root stacks. Specifically, we define the local
type of a principal bundle over the root stack and show that these correspond to parahoric torsors
of a given type. Finally, we restrict Boalch’s definition of a logarithmic parahoric connection
using a condition paralleling the one for parabolic vector bundles (e.g., as in [7, §2.2]) and show
that one has a correspondence between connections on a principal bundle over the root stack and
connections on the parahoric torsor.
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1. Principal bundles on algebraic stacks

We will work over the category of C-schemes, which we denote by Sch/C. If not otherwise
indicated, X will be a smooth algebraic stack locally of finite type over C. We will also fix a
complex algebraic group G.

For a C-scheme U , the fibre category of X over U will be denoted by X(U). Via the 2-Yoneda
lemma, we will freely identify an object f ∈ ObX(U) with a 1-morphism f : U →X.

1.1. Coherent sheaves

A coherent sheaf V on X consists of the following data (e.g., [25, Definition 7.18], [15,
Definition 2.50], [17, Lemme 12.2.1]). If f : U → X is a smooth atlas (i.e., if U is a C-scheme
and f is a smooth map), then we have a coherent OU -module Vf. For a (2-)commutative diagram

U
k

f

V

g

X

(1.1)

with f,g smooth atlases, we are given an isomorphism

αV
k = αk : Vf

∼−→ k∗Vg, (1.2)

such that for a (2-)commutative diagram

U

f

k
V

g

l
W

h

X

(1.3)

the diagram

Vf
αl◦k

αk

(l ◦ k)∗Vh

k∗Vg
k∗αl

k∗l∗Vh

(1.4)

commutes, where the two objects on the right side are identified via the canonical isomorphism
of functors (l ◦ k)∗ ∼−→ k∗l∗.

We will call a coherent sheaf V on X a vector bundle if Vf is a locally free OU -module
whenever f ∈ ObX(U).

If X is a Deligne–Mumford stack, then it is enough to specify Vf for étale atlases f : U → X. In
this case, we may define the sheaf of differentials Ω1

X
= Ω1

X/C
as follows. For an étale morphism

f : U →X, we simply set

Ω1
X,f := Ω1

U/C.

Given a diagram (1.1), with f and g, and hence k, étale, one has an exact sequence [24, Morphisms
of Schemes, Lemma 32.16]

0 → k∗Ω1 → Ω1 → Ω1 → 0;
V/C U/C U/V
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since k is étale, the last term vanishes, so we obtain isomorphisms (1.2). The fact that they satisfy
the compatibility condition (1.4) is due to their canonical nature.

If V is a vector bundle over a Deligne–Mumford stack X, by a connection on V we will
mean the data of a connection ∇f on Vf for each f ∈ ObX(U) such that for a diagram (1.1), the
following commutes:

Vf

∇f

αV
k

Vf⊗OU

αV
k ⊗αΩ

k

k∗Vg
k∗∇g

k∗Vg ⊗OU
k∗Ω1

V/C
.

1.2. Principal bundles

With X and G as in the beginning of the section, we can take as a definition of a principal
G-bundle on X the following, paralleling the definition of a coherent sheaf. For each smooth atlas
f : U → X, we are given the data of a principal G-bundle Ef over U , and for each diagram (1.1)
we have isomorphisms

βk = βE
k : Ef

∼−→ k∗Eg

such that for a diagram (1.3), one has a commutative diagram

Ef
βl◦k

βk

(l ◦ k)∗Eh

k∗Eg
k∗βl

k∗l∗Eh,

(1.5)

where again, we use the canonical isomorphism (l ◦ k)∗ ∼−→ k∗l∗ to identify the two bundles on
the right-hand side.

Let F be another G-bundle over X. A morphism of G-bundles ϕ : E → F consists of the
data of a morphism ϕf : Ef → Ff for each smooth atlas f : U → X, such that given a diagram
(1.1), the square

Ef

ϕf

βE
k

Ff

βF
k

k∗Eg
k∗ϕg

k∗Fg

commutes. It is not hard to see then that the category of principal G-bundles over X is a groupoid.
We will recall that the classifying stack BG is the fibred category whose objects over a

C-scheme U are principal G-bundles over U and whose morphisms are pullback diagrams of
G-bundles. The following is not hard to verify.

Lemma 1.1. The datum of a principal G-bundle over X in the above sense is equivalent to
the datum of a morphism X → BG. Two G-bundles over X are isomorphic if and only if the
corresponding morphisms X→ BG are 2-isomorphic.
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Given X,G as above, we may now consider the fibred category whose objects over a C-
scheme U are G-bundles E → X × U and whose morphisms are pullback diagrams of G-
bundles. We will denote this category by

BunG X.

Let X,Y be separated algebraic stacks of finite presentation over C with finite diagonals. We
may consider the fibred category Hom

C
(X,Y) whose fibre category over a C-scheme U is the

groupoid of functors HomU(X× U,Y× U) = HomC(X× U,Y).
Now, taking X× U in Lemma 1.1 and Y := BG, it is not hard to see that the following holds.

Proposition 1.2. There is an equivalence

BunG X∼= Hom
C
(X,BG).

1.3. Principal bundles on quotient stacks

Let Y be C-scheme and let Γ be a complex algebraic group acting on Y on the left with action
map λ : Γ × Y → Y . Let pΓ and pY be the projections of Γ × Y to pΓ and pY respectively.
Later, we will primarily be concerned with the case where Γ is finite, but what we record here
holds in greater generality.

Let π : E → Y be a (right) G-bundle over Y . Suppose Λ : Γ × E → E is a left action for
which π is Γ -equivariant and which commutes with the G-action ρ : E × G → G, i.e.,

Γ × E × G
1Γ ×ρ

Λ×1G

Γ × E

Λ

E × G ρ E

commutes. In this case, we call Λ a compatible Γ -action. A (Γ,G)-bundle is a G-bundle on Y

together with a compatible Γ -action. If E → Y and F → Y are (Γ,G)-bundles, a morphism of
(Γ,G)-bundles E → F is a morphism of G-bundles which commutes with the Γ -action. We
will denote the stack of (Γ,G)-bundles by

BunΓ,G Y.

This is the fibred category whose fibre category over a C-scheme U is the groupoid of (Γ,G)-
bundles over Y × U , where Y × U has the Γ -action induced from λ.

Remark 1.3. To give a compatible Γ -action on a G-bundle E is equivalent to giving an isomor-
phism τ : p∗

Y E
∼−→ λ∗E of G-bundles over Γ × Y such that the following “cocycle condition”

holds. Consider the diagrams

Γ × Γ × Y
1Γ ×λ

L
m×1X

Γ × Y

λ

Γ × Y
λ

Y,

Γ × Γ × Y
pΓ ×Y

N1Γ ×λ

Γ × Y

λ

Γ × Y pY
Y,

Γ × Γ × Y
pΓ ×Y

Pr
m×1X

Γ × Y

pY

Γ × Y pY
Y.
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Then, modulo canonical isomorphisms, we get two isomorphisms

(m × 1Y )∗τ, (1Γ × λ)∗τ ◦ p∗
Γ ×Y τ : ∗

PrE
∼−→ L∗E.

The condition we require is that

(m × 1Y )∗τ = (1Γ × λ)∗τ ◦ p∗
Γ ×Y τ. (1.6)

In what follows, we will more often talk about (Γ,G)-bundles in terms of this description.

Recall that the quotient stack [Γ \Y ] is the fibred category whose objects over a C-scheme U

are diagrams

M Y

U,

where the vertical arrow is a (left) principal Γ -bundle over U and the horizontal arrow is a
Γ -equivariant map, and whose morphisms over a morphism U → V of C-schemes are diagrams

M N Y

U V,

where the square is Cartesian and the composition M → N → Y is the same arrow as occur-
ring the object over U . There is a natural quotient morphism ν : Y → [Γ \Y ] which takes a
C-morphism f : U → Y to

Γ × U Y

U,

where the horizontal map is λ ◦ (1Γ × f ).
With this, the diagram

Γ × Y
λ

pY

Y

ν

Y ν [Γ \Y ]
is Cartesian, yielding an isomorphism

Y ×[Γ \Y ] Y ∼= Γ × Y. (1.7)

Hence we obtain isomorphisms

Y ×[Γ \Y ] Y ×[Γ \Y ] Y ∼= Γ × Y ×[Γ \Y ] Y ∼= Γ × Γ × Y. (1.8)

Let E be a G-bundle over [Γ \Y ]. As ν : Y → [Γ \Y ] is a smooth atlas for [Γ \Y ], to it is
associated a G-bundle Eν . The data of the bundle E and the diagram
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Y ×[Γ \Y ] Y
p2

p1

Y

ν

Y ν [Γ \Y ]

yield isomorphisms βpi
: Eν◦pi

∼−→ p∗
i Eν . Since Eν◦p1

∼= Eν◦p2 , we then obtain an isomorphism

σ : p∗
1Eν

∼−→ p∗
2Eν of G-bundles over Y ×[Γ \Y ] Y . Now, if pij : Y ×[Γ \Y ] Y ×[Γ \Y ] Y →

Y ×[Γ \Y ] Y are the various projections, then the condition (1.5) implies that the cocycle con-
dition

p∗
13σ = p∗

23σ ◦ p∗
12σ (1.9)

holds.
Under the isomorphism (1.7), σ becomes an isomorphism τ : p∗

Y Eν
∼−→ λ∗Eν of G-bundles

over Γ ×Y , and the condition (1.9) above translates precisely into the condition (1.6), and hence
Eν is a (Γ,G)-bundle over Y .

Conversely, let E be a (Γ,G)-bundle on Y . Let f : U → [Γ \Y ] be any smooth atlas and
consider the diagram

U ×[Γ \Y ] Y
qf

νf

Y

ν

U
f

[Γ \Y ].

Then νf : U ×[Γ \Y ] Y → U is a Γ -torsor and q∗
f
E is a (Γ,G)-bundle over U ×[Γ \Y ] Y .

Thus q∗
f
E descends to a G-bundle Ef over U . For a diagram (1.1), the morphisms βk arise by

considering the diagram

U ×[Γ \Y ] Y
k̃

νf

V ×[Γ \Y ] Y
qg

νg

Y

ν

U
k

V g [Γ \Y ],
and the uniqueness of the descended objects. Therefore a (Γ,G)-bundle on Y yields a G-bundle
on [Γ \Y ].

Proposition 1.4. There is an equivalence

BunΓ,G Y
∼−→ BunG[Γ \Y ].

Proof. To see this, for each C-scheme U , we need to repeat the above argument with Y replaced
by Y × U with the induced action. One will need to use the fact that

[Γ \Y × U ] ∼= [Γ \Y ] × U,

which is not hard to prove. �
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1.4. Associated bundles

For a principal G-bundle E over a C-scheme X, and a left G-action λ : G × F → F on a
C-scheme F , we will denote the associated fibre bundle over X with fibre F by

E ×λ F.

Lemma 1.5. Let f : X → Y be a morphism of C-schemes, let E be a principal G-bundle over Y ,
and let F be a C-scheme endowed with a (left) G-action λ : G × F → F . Then there is a canon-
ical isomorphism

ν
E,λ
f : f ∗E ×λ F

∼−→ f ∗(E ×λ F
)

of schemes over X.

Proof. By definition, the diagram

f ∗P P

X Y

is Cartesian. Hence, so are

f ∗P × F P × F

X Y

and

f ∗P ×λ F P ×λ F

X Y,

the latter obtained by taking the quotient of the top row of the diagram on the left by G. Also, by
definition,

f ∗(P ×λ F
)

P ×λ F

X Y

is Cartesian, so there is a canonical isomorphism between the corresponding upper-left cor-
ners. �

We now define for a smooth morphism f : U → X, where U is a scheme,(
E ×λ F

)
f
:= Ef ×λ F.

Given a diagram (1.1), the data for E comes with an isomorphism βk : Ef → k∗Eg, and hence
there is an induced isomorphism

Ef ×λ F
βk−→ k∗Eg ×λ F.

Composing this with the isomorphism ν
Eg,λ

provided by the lemma, we obtain isomorphisms
k
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ν
Eg,λ

k ◦ βk : (E ×λ F
)
f

∼−→ k∗(E ×λ F
)
g
.

These will satisfy the relations (1.5) because the βk do and because of the canonical nature of the
isomorphisms obtained in Lemma 1.5.

As usual, we are mainly interested in this construction in the cases where F = V is a repre-
sentation of G, via ρ : G → GL(V ), say, in which case the associated bundle E ×ρ V is a vector
bundle, and where F = H is another algebraic group on which G acts via a homomorphism
ϕ : G → H (and left multiplication), yielding a principal H -bundle E ×ϕ H .

Corollary 1.6. If V is a finite-dimensional vector space and ρ : G → GL(V ) a representation,
then E ×ρ V is a vector bundle in the sense of Section 1.1. If H is a complex algebraic group and
ϕ : G → H a homomorphism, then E ×ϕ H is a principal H -bundle in the sense of Section 1.2.

In particular, the adjoint bundle

adE := E ×ad Lie(G).

arising from the adjoint representation ad : G → GL(Lie(G)) of G on its Lie algebra Lie(G) is
well-defined.

Remark 1.7. A homomorphism of algebraic groups ϕ : G → H induces a 1-morphism of al-
gebraic stacks Bϕ : BG → BH, taking a principal G-bundle over U (an object of BG) to the
associated H -bundle. One then sees that if the principal G-bundle E on X corresponds to the
morphism E : X → BG (via the equivalence of Lemma 1.1), then the H -bundle E ×ϕ H corre-
sponds to Bϕ ◦ E.

1.5. Reduction of structure group

Fix a principal G-bundle E over X and let H ⊆ G be a closed subgroup of G. Then for each
f ∈ ObX(U) and each diagram (1.1), the isomorphism βk induces another one

Ef/H
∼−→ k∗Eg/H = k∗(Eg/H),

which we will denote by βk,H . Then a reduction τ of the structure group to H consists of the
data of a section τf : U → Ef/H for each f ∈ ObX(U) such that for each diagram (1.1), one has

βk,H ◦ τf = k∗τg. (1.10)

Lemma 1.8. Let E be a principal G-bundle over X. The following are equivalent pieces of
information:

(a) a reduction of structure group τ to H ;
(b) a principal H -bundle F and an isomorphism

φ : E ∼= F ×ι G,

where ι : H → G is the inclusion map;
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(c) a factorization

X
F

E

BH

Bι

BG,

where E is the morphism of stacks corresponding to E .

Proof. Suppose we are given a reduction τ of E to H . For f ∈ ObX(U), we consider the fibre
product Ff := Ef ×Ef/H U which fits into a Cartesian diagram

Ff Ef

U τf
Ef/H.

(1.11)

Then Ff is an H -bundle over U with the property that Ff ×ι G ∼= Ef. To see that we get isomor-
phisms βF

k : Ff → k∗Fg, we take the diagram (1.11) for g ∈ ObX(V ) and pull it back via k.
Then using the βE

k and (1.10), we observe that Ff and k∗Fg give isomorphic fibre products, so
we may construct the βF

k . The compatibility condition (1.5) will come from that of the βE
k .

Conversely, suppose there exists an H -bundle F as in (b). Now, noting that Ff → Ef is
an H -equivariant morphism and Ff/H ∼= U , we get sections τf : U → Ef/H . To see that we
have (1.10), we use the diagram

Ff

βF
k

Ef

βE
k

k∗Fg k∗Eg.

This shows that (a) and (b) are equivalent.
The equivalence of (b) and (c) is clear from Remark 1.7. �

1.6. Connections

Let E be a principal bundle over a Deligne–Mumford stack X. Then a connection ∇ on E
consists of the data of a connection ∇f on each Ef where f : U → X is an étale atlas which pulls
back properly with respect to diagrams (1.1). To be precise, suppose we realize the connections
in terms of Lie(G)-valued 1-forms so that ωf ∈ H 0(U,Ω1

U/C
⊗Lie(G)) is the connection 1-form

corresponding to ∇f. From the Cartesian diagram

k∗Eg
k Eg

U
k

V,

we obtain a connection k∗ωg on k∗Eg. Then the condition that we want is
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ωf = β∗
k k∗ωg. (1.12)

One obtains the following simply because induced connections behave well with respect to
pullbacks.

Lemma 1.9. Let E be a principal G-bundle admitting a connection ∇ .

(a) If ρ : G → GL(V ) is a representation, then there is an induced connection ∇ρ on the asso-
ciated vector bundle E ×ρ V .

(b) If ϕ : G → H is a homomorphism of algebraic groups, then there is an induced connection
∇ϕ on the associated principal bundle E ×ϕ H .

The following statement is justified in the course of the proof of [2, Proposition 2.3].

Lemma 1.10. Let G be a reductive algebraic group. Let L ⊆ G be the Levi factor of a parabolic
subgroup of G. Then there is an L-equivariant splitting ψ : Lie(G) → Lie(L).

Lemma 1.11. let L ⊆ G be any closed subgroup. Assume that there exists an H -equivariant (for
the adjoint action) splitting ψ : Lie(G) → Lie(H) (of the inclusion map Lie(H) ↪→ Lie(G)). If
the G-bundle E admits a connection and a reduction to H , then the resulting H -bundle (as given
in Lemma 1.8) admits a connection.

Proof. This is the analogue of Lemma 2.2 of [2]. Let F be the H -bundle arising from the
reduction in structure group and for f ∈ ObX let jf : Ff → Ef be the inclusion morphism. Given
a connection form ωf on Ef, the corresponding connection form on Ff is given in the quoted
result by

νf := ψ ◦ j∗
f ωf.

The compatibility condition (1.12) can be obtained by tracing through the diagram

Ff
βF

jf

k∗Fg
kF

k∗jg

Fg

jg

Ef

βE
k

k∗Eg
kE

Eg

U V.

�

1.7. The Atiyah sequence

Let Y be a smooth C-scheme (locally) of finite type and let π : E → Y be a principal
G-bundle. One has an exact G-equivariant sequence of vector bundles

0 → E × g → T E → π∗T Y → 0

and the Atiyah sequence can be obtained by quotienting by the G-action:

0 → adE → AtE → T Y → 0. (1.13)
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Lemma 1.12. Let f : X → Y be an étale morphism of smooth C-schemes (locally) of finite type
and let π : E → Y be a principal G-bundle. Then there is a canonical isomorphism

γ E
f : Atf ∗E ∼−→ f ∗ AtE

fitting into a commutative diagram

0 adf ∗E

νad
f

Atf ∗E
γ E
f

T U 0

0 f ∗ adE f ∗ AtE f ∗T V 0,

(1.14)

where νad
f is the isomorphism given in Lemma 1.5, noting that adE is the bundle associated to

the adjoint representation ad : G → GL(g).

Observe that the bottom row, being the pullback of an exact sequence by a flat map, is exact.

Proof. We begin with the Cartesian diagram

f ∗E f

π

E

π

X
f

Y

and observe that since f is obtained from f by base change it is étale. Now, we have a canonical
exact sequence

0 → f ∗Ω1
E/C → Ω1

f ∗E/C → Ω1
f ∗E/E → 0

whose last term vanishes since f is étale. Thus, we have a canonical isomorphism T (f ∗E)
∼−→

f ∗T E, and hence a Cartesian square

Tf ∗E T E

X Y.

Quotienting by the action of G on the top row yields another Cartesian square

Atf ∗E AtE

X Y,

whence the canonical isomorphism γ E
f : Atf ∗E ∼−→ f ∗ AtE.

To see that the first square in (1.14) commutes, we first note that the proof of Lemma 1.5
actually shows that adf ∗E and f ∗ adE are both canonically isomorphic to adE ×Y X and the
argument above similarly shows that Atf ∗E and f ∗ AtE are both canonically isomorphic to
AtE ×Y X. Now, modulo canonical isomorphisms, the horizontal maps are essentially the base
change map adE ×Y X → AtE ×Y X, and so the first square must commute. The second square
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commutes since it is map of cokernels and because of the canonical nature of the morphism
T U → f ∗T V . �

We will now assume that X is a Deligne–Mumford stack and let E be a principal G-bundle
over X. Given an étale map f : U → X, we may define

(AtE )f := AtEf.

For a diagram (1.1) in which f,g and hence k are étale, we can compose the isomorphism AtEf →
Atk∗Eg with the isomorphism At k∗Eg → k∗ AtEg obtained in Lemma 1.12 to get isomorphisms

(AtE )f
∼−→ k∗(AtE )g.

Arguing as in Section 1.4, these will satisfy the condition in (1.4) and hence yield a well-defined
vector bundle on X. In fact, since the diagram

0 adEf AtEf T U 0

0 k∗ adEg k∗ AtEg k∗T V 0

commutes, the sequence

0 → adE → AtE → TX→ 0

is well-defined as an exact sequence of vector bundles on X. We will call it the Atiyah sequence
associated to E .

Lemma 1.13. A principal bundle E over a Deligne–Mumford stack X admits a connection if and
only if its Atiyah sequence splits.

The only question here is the compatibility with the isomorphisms βk , which is built into the
definition of a connection.

2. Root stacks

2.1. Definition

Let X be a C-scheme, L an invertible sheaf over X, s ∈ H 0(X,L) and r ∈ N. We will define
X = X(L,r,s) to be the category whose objects are quadruples

(f : U → X,N,φ, t), (2.1)

where U is a C-scheme, f is a morphism of C-schemes, N is an invertible sheaf on U ,
t ∈ H 0(U,N) and φ : N⊗r ∼−→ f ∗L is an isomorphism of invertible sheaves with φ(t⊗r ) = f ∗s.
A morphism

(f : U → X,N,φ, t) → (g : V → X,M,ψ,u)

consists of a pair (k, σ ), where k : U → V is a C-morphism making
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U
k

f

V

g

X

commute and σ : N ∼−→ k∗M is an isomorphism such that σ(t) = h∗(u). If

(g : V → X,M,ψ,u)
(l,τ )−→ (h : W → X,J,ρ, v)

is another morphism, then the composition is defined as

(l, τ ) ◦ (k, σ ) := (
l ◦ k, k∗τ ◦ σ

)
, (2.2)

using the canonical isomorphism (l ◦ k)∗J ∼−→ k∗l∗J .
We will often use the symbols f,g to denote objects of X. If we refer to f ∈ ObX(U), then it

will be understood that this refers to the quadruple f= (f : U → X,Nf, φf, tf).
The category X comes with a functor X → Sch/C which simply takes f to the C-scheme U

and (k, σ ) to k.

Proposition 2.1. (See [14, Theorem 2.3.3].) The category X, together with the structure mor-
phism X→Sch/C, is a Deligne–Mumford stack.

There is also a functor π : X→ Sch/X, whose action on objects and morphisms is given by

f �→ f : U → X, (k,σ ) �→ k;
this yields a 1-morphism over Sch/C, which we will often simply write as π : X→ X.

Example 2.2. (See [14, Example 2.4.1].) Suppose X = SpecA is an affine scheme, L = OX

is the trivial bundle and s ∈ H 0(X,OX) = A is a function. Consider U = SpecB where B =
A[t]/(tr − s). Then U admits an action of the group (scheme) of r-th roots of unity μr , where
the induced action of ζ ∈ μr is given by

ζ · s = s, s ∈ A, ζ · t = ζ−1t.

In this case, the root stack X(OX,s,r) coincides with the quotient stack [U/μr ]. Thus, as a quotient
by a finite group (scheme), the map U → X is an étale cover.

The root stack X comes with a tautological line bundle N which can be described as follows.
For an étale morphism f : U →X with U a C-scheme, we define

Nf := Nf,

where Nf is the line bundle. The isomorphisms (1.2) come from those occurring in the definition
of a morphism in the category X. One also has a global section t ∈ H 0(X,N ) by taking

tf := tf.
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2.2. Finite Galois coverings

Let p : Y → X be a finite Galois covering of smooth quasi-projective varieties with Galois
group Γ and let D̃ ⊆ Y be the locus of points which have non-trivial isotropy. This is a divisor
whose irreducible components are smooth [5, Lemma 2.8]. We will assume that all such isotropy
subgroups are cyclic of order r . Let D := p(D̃) so that

p∗D = rD̃.

Then D is a divisor on X; let s ∈ H 0(X,OX(D)) be a section defining D. Then taking u ∈
H 0(Y,OY (D̃)) defining D̃, adjusting by a non-vanishing function if necessary, we may assume
that under the isomorphism φY : OY (D̃)⊗r ∼−→ p∗OX(D), the equation

φY

(
u⊗r

) = p∗s
holds. This defines a morphism p : Y →X = XOX(D),s,r .

Let f : U → X be an arbitrary morphism from a C-scheme U , say f is as in (2.1), and consider
the fibre product

U ×X Y.

Lemma 2.3. The projection morphism makes U ×X Y → U into a Γ -torsor over U .

Proof. Since X has a representable diagonal, U ×X Y is a scheme (and hence its fibre categories
are sets). The Γ -action on U ×X Y is induced by that on Y . We need to see that this action is free.
It is enough to check this on the W -points (U ×X Y)(W) for an arbitrary C-scheme W . Since
Γ is a finite group, there is no harm in assuming that W is connected, so that we may identify
Γ (W) with Γ as a group (in the set-theoretic sense).

The fibre category (U ×X Y)(W) is a set whose elements are triples (a, b, σ ), where
a : W → U , b : W → Y are morphisms such that

W
b

a

Y

π̂

U
f

X

commutes and σ : a∗Nf
∼−→ b∗OY (D̃) is an isomorphism with

σ
(
a∗tf

) = b∗u. (2.3)

To explain the Γ -action on (U ×XY)(W), we first recall that Γ acts on the line bundle OY (D̃)

in a way that is compatible with the action on Y . This action is via isomorphisms OY (D̃)
∼−→

γ ∗OY (D̃) for each γ ∈ Γ . Restricting this action to D̃, we get one on OY (D̃)|D̃ , which is the
normal bundle to D̃ in Y (at least away from the intersections of the irreducible components
of D̃), and the action of Γ is faithful (see the proof of Lemma 2.8 in [5]). Now, γ ∈ Γ acts on
a triple (a, b, σ ) by taking b to γ ◦ b, and acting on σ in a way to compensate for the fact that
in (2.3), we will now have (γ ◦ b)∗u instead of b∗u; this action comes from that on OY (D̃) just
described.

Fixing (a, b, σ ), if γ lies in its isotropy subgroup, then it follows that γ ◦b = b, which implies
that b(W) ⊆ D̃. But then b∗OY (D̃) is the pullback of the normal bundle to D̃ on which Γ acts
faithfully, so if γ also fixes σ , then it must be the identity element. �



384 I. Biswas et al. / Bull. Sci. math. 136 (2012) 369–398
Proposition 2.4. Suppose p : Y → X is as above. Then there is an equivalence of stacks

X
∼−→ [Γ \Y ].

Proof. We define a functor [Γ \Y ] → X. Suppose we are given an object of [Γ \Y ] over U : this
is a diagram

P
σ

ρ

Y

U

where ρ : P → U is a Γ -torsor and σ : P → Y is a Γ -equivariant morphism. Since σ is equiv-
ariant, σ ∗M gives a line bundle on P with a Γ -action; obviously, it also comes with a section
σ ∗u and an isomorphism σ ∗α : (σ ∗M)⊗r ∼−→ (π ◦ σ)∗L with (σ ∗α)(σ ∗u)⊗r = (π ◦ σ)∗s.

As ρ : P → U is a Γ -torsor, U is a geometric quotient by Γ . The composition p ◦ σ : P →
Y → X is a Γ -invariant morphism, and hence there is a unique morphism f : U → X making

P
σ

ρ

Y

p

U
f

X

commute. The fact that σ ∗M has a compatible Γ -action means that it and the section σ ∗u de-
scend to U yielding an object f ∈ ObX(U), and a (2-)commutative diagram

P
σ

ρ

Y

p

U
f

X.

(2.4)

Since a morphism in [Γ \Y ] is simply a pullback diagram of Γ -torsors, it is clear to see how
this functor acts on morphisms. Thus, we have defined [Γ \Y ] → X.

To go the other way, suppose we are given an object of X over U , which translates into a
morphism f : U →X. Then by Lemma 2.3, the top and left arrows of the Cartesian square

U ×X Y Y

p

U
f

X

(2.5)

yield an object of [Γ \Y ]. A morphism in (the category) X translates to a (2-)commutative dia-
gram

U V

X

in which case, one sees that the appropriate definition of this functor on morphisms is to take the
pullback diagram of the torsor obtained above.
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One will note that the square in (2.4) is, in fact, Cartesian. Lemma 2.3 states that the fibre
product U ×X Y is a Γ -torsor over U . The commutativity of (2.4) yields a morphism P →
U ×XY which will be a morphism of Γ -torsors over U and hence an isomorphism. Once account
is taken of this, one realizes that the diagrams (2.4) and (2.5) are essentially the same, and that
the functors are quasi-inverses of each other. �
2.3. Root stacks over curves

The following statement (and its attribution) can be found in [19, Theorem 1.2.15].

Theorem 2.5 (Bundgaard–Nielsen–Fox). Let X be an irreducible projective algebraic curve
over C. Let Z := {x1, . . . , xm} ⊆ X be set of m distinct points and let r1, . . . , rm ∈ N�2. If g = 0,
then we will assume that either m � 3 or m = 2 with r1 = r2. Then there exist a projective
curve Y and a Galois covering p : Y → X such that p|Y\p−1(Z) is unramified and if y ∈ p−1(xi)

then the ramification index of y is precisely ri .

By taking r := r1 = · · · = rm, we obtain the following from Proposition 2.4.

Corollary 2.6. Let X be as in Theorem 2.5. If g � 1 or m > 1, then the associated root stack
X = XOX(S),s,r is a global quotient stack. Precisely, if a Galois covering p : Y → X is chosen as
in Theorem 2.5, with Galois group Γ , then there is an equivalence

X
∼−→ [Γ \Y ].

3. Bundles and root stacks

3.1. Parabolic vector bundles and root stacks

We recall the definition of a parabolic vector bundle over a C-scheme X with respect to an
effective Cartier divisor D given in [27, §1]. We will use R as an index category, whose objects
are real numbers and in which a (single) morphism β → α exists, by definition, precisely when
β � α. Let E∗ be a functor E∗ : Rop → QCoh(X), where QCoh(X) is the category of quasi-
coherent OX-modules. If α ∈ R, we simply write Eα for E∗(α), and iα,β for the morphism
Eα → Eβ given by the functor E∗ when α � β .

Given E∗ as above and γ ∈ R, one can define another functor E[γ ]∗ : Rop → QCoh(X) by
setting

E[γ ]α := Eα+γ ,

together with the only possible definition on morphisms. If γ � 0, then there is a natural trans-
formation E[γ ]∗ → E∗. The functor E∗ is called a parabolic sheaf if it comes with a natural
isomorphism of functors j : E∗ ⊗OX

OX(−D)
∼−→ E[1]∗ fitting into a commutative diagram

E∗ ⊗OX
OX(−D)

j
E[1]∗

E .
∗
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The sheaf E0 is often referred to as the underlying sheaf and written as simply E. A morphism of
parabolic sheaves (E∗, j) → (F∗, k) is a natural transformation E∗ → F∗ intertwining j and k.

A parabolic sheaf (E∗, j) is said to be coherent if it factors through Coh(X) → QCoh(X),
where Coh(X) is the category of OX-modules and further if there is a finite sequence of real
numbers 0 � α1 < α2 < · · · < αl < 1 such that if α ∈ (αi−1, αi], then

iαi ,α : Eαi
→ Eα

is the identity map. We will thus have a filtration of sheaves

E := E0 ⊃ Eα1 ⊃ Eα2 ⊃ · · · ⊃ Eαl
⊃ E1

∼−→ E(−D). (3.1)

A coherent parabolic sheaf (E∗, j) is called a parabolic vector bundle if E∗ takes values in
the category VectX of vector bundles over X and further, whenever β � α < β + 1, the sheaf
coker iα,β , which is supported on D, is locally free as an OD-module. The category of parabolic
vector bundles will be denoted by ParVectD(X) = ParVect(X).

We will say that the coherent parabolic sheaf (E∗, j) has rational weights if the αi , 1 � i � l,
may be chosen in Q. Since this is a finite set, these weights may be chosen in 1

r
Z for some r ∈ N;

in this case, we will think of E∗ as a functor ( 1
r
Z)op → Coh(X). For obvious reasons, we can

say then that E∗ has weights dividing r . We will denote by ParVectD,r (X) = ParVectr (X) the
category of parabolic vector bundles with weights dividing r .

One of the main results of [11] is that parabolic vector bundles on X correspond to vector
bundles on an appropriate root stack. We give a precise statement. With X and D as above. Let
s ∈ H 0(X,OX(D)) be a section defining the divisor D and fix r ∈ N. We will let X := XOX(D),s,r

be the corresponding root stack.

Theorem 3.1. (See [11, Théorème 3.13].) The functor Vect(X) → ParVectD,r (X) which takes
V to the functor E∗ : ( 1

r
Z)op → Vect(X)

i

r
�→ π∗

(
V ⊗OX

N⊗−i
)

is an equivalence of tensor categories.

3.2. Degree of a vector bundle over a root stack

Assume now that X is a smooth projective variety with very ample invertible sheaf OX(1).
Let D,r , and X be as above. Then if V is a vector bundle over X, [11, Définition 4.2] defines its
degree as

degX V := q∗
(
cet

1 (V) · π∗cet
1

(
OX(1)

)n−1)
,

where q : X→ SpecC is the structure morphism.
One has the following theorem.

Theorem 3.2. (See [11, Théorème 4.3].) Let V be a vector bundle on the root stack X and E∗ the
corresponding parabolic vector bundle over X (via the equivalence given in Theorem 3.1). Then

par-degE∗ = degX V .
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3.3. Principal bundles over root stacks

We return to the situation of Section 2.2, where p : Y → X is a finite Galois covering of
smooth quasi-projective varieties with Galois group Γ . By Proposition 1.4, we immediately ob-
tain the following.

Corollary 3.3. With X as in Corollary 2.6, there is an equivalence

BunG X
∼−→ BunΓ,G Y.

We will now restrict to the case where X is a smooth projective curve, where we can give
something of a refinement of this equivalence. Let x ∈ X,y ∈ Y , and let Ox,Oy be the respective
local rings, and Ôx, Ôy their completions, and Kx,Ky the respective quotient fields. As a matter
of notation, we will set

Dx := Spec Ôx, D×
x := SpecKx, Dy := Spec Ôy, D×

y := SpecKy.

One has a Cartesian diagram

D×
x X \ x

Dx X.

(3.2)

The local type of a (Γ,G)-bundle is defined in [4, §2.2] as follows. Let E be a (Γ,G)-
bundle over Y . Then for each y ∈ p−1(Z), E|Dy

is a (Γy,G)-bundle and this is defined by a
representation ρy : Γy → G. Let τy denote the equivalence class of the representation ρy . Then
the local type of E is defined as

τ := {
τy : y ∈ p−1(Z)

}
.

We let Bunτ
Γ,G Y denote the stack of (Γ,G)-bundles of local type τ .

Because of Corollary 3.3, there should be a well-defined notion of a local type for a G-bundle
over X. Fix x ∈ Z and let y1, y2 ∈ p−1(x). Then there exists γ ∈ Γ such that conjugation by
γ yields an isomorphism Γy1

∼−→ Γy2 ; since Γy1 ,Γy2 are abelian, this isomorphism is in fact

independent of the choice of γ . Thus, it is possible to choose isomorphisms cy : μr
∼−→ Γy for

each y ∈ p−1(x) such that for all y1, y2 ∈ p−1(x), the diagram

μr

cy1 cy2

Γy1 Γy2

commutes. This makes each E|Dy
a (μr ,G)-bundle and if γ is as above, it also yields an

isomorphism of E|Dy1

∼−→ E|Dy2
as (μr ,G)-bundles, and hence the local representations

ρy1 ◦ cy1 , ρy2 ◦ cy2 : μr → G are equivalent.
Observe that Dx ×X Y ∼= ∐

−1 Dy , so it follows that
y∈p (x)
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Dx ×X X∼= Dx ×X [Γ \Y ] ∼= [Γ \Dx ×X Y ] ∼=
[
Γ \

∐
y∈p−1(x)

Dy

]
∼= [Γy\Dy] ∼= [μr\Dy],

where, in the last two expressions, y ∈ p−1(x) is any choice of preimage.
Now, given a G-bundle E on X, E |Dx×XX is a (μr ,G)-bundle over Dy . This may be identified

with the restriction of the associated (Γ,G)-bundle on Y restricted to Dy for some y ∈ p−1(x).
There is thus a well-defined equivalence class of a homomorphism μr → G, which we denote
by τx and call the local type of E at x. We define the local type of E to be τ := {τx : x ∈ Z}. We
will denote by Bunτ

GX the stack of G-bundle over X of local type τ .

Proposition 3.4. The equivalence of Corollary 3.3 restricts to equivalences

Bunτ
G X

∼−→ Bunτ
Γ,G Y

for each local type τ .

Remark 3.5. The local type of a G-bundle E on X is independent of our realization of X as a
quotient stack [Γ \Y ]. If we fix x ∈ Z and set B := Ôx[t]/(tr − z) ∼= C[[t]], where z ∈ Ôx is a
parameter at x, we observe that B admits a μr -action for which Ôx is the ring of invariants and
if Dx̂ := Spec B , then we have an abstract isomorphism

Dx ×X X∼= [μr\Dx̂].
Then a E restricts to a G-bundle on Dx ×X X and hence corresponds to a (μr ,G)-bundle on Dx̂ ,
which determines the local type.

4. Connections on vector bundles over a root stack

In this section, we will assume X to be a smooth irreducible curve over C. Let Z ⊆ X be
a reduced divisor. Let s ∈ H 0(X,OX(Z)) be a section defining Z and fix r ∈ N. We will let
X = XOX(Z),s,r be the associated root stack.

4.1. Parabolic connections

Suppose E∗ is a rank n parabolic vector bundle over X given as a filtered sheaf as in (3.1). It
is easy to recover the parabolic structure on the underlying vector bundle E in the original sense
of [18] in terms of a weighted flag in the fibre Ex for each x ∈ suppZ. Given the filtration (3.1),
we take the images of the fibres of the Ei in Ex to get a flag

Ex = Ex,1 ⊃ Ex,2 ⊃ · · · ⊃ Ex,k ⊃ Ex,k+1 = {0}, (4.1)

and the weight αi attached to Ex,i is the largest α such that Ex,i = iα,0((Eα)x).
Let D be a connection on E with (logarithmic) simple poles at Z. If x ∈ suppZ then the

residue Resx D is a well-defined endomorphism of Ex . We say that D is a parabolic connection
if for each x ∈ suppZ,

Resx D(Ei) ⊆ Ei+1, and Resx D|Ei/Ei+1 = αi1Ei/Ei+1, (4.2)

for 1 � i � k [7, §2.2].
We will use the following [7, Lemma 4.2].

Lemma 4.1. A parabolic line bundle L∗ admits a connection if and only if par-degL∗ = 0.
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4.2. Connections on the root stack and parabolic connections

Proposition 4.2. The category of vector bundles with connections on X is equivalent to the
category of parabolic vector bundles with parabolic connections on X.

Proof. Suppose we are given a rank n vector bundle and connection (V,∇) on X. We want to
show that ∇ induces a parabolic connection on the corresponding parabolic vector bundle E∗
on X. Since a connection is defined locally and the parabolicity condition (4.2) is also local, as
in Example 2.2, we may assume that X = SpecA, that suppZ = {x} is a single parabolic point
defined by s ∈ A whose image in OX,x is a parameter at x and such that ds is a local basis for
Ω1

X/C
, so that if B := A[t]/(tr − s) and if U := SpecB , then X = [U/μr ]. Note also that Ω1

U/C

has dt as a local basis. If γ ∈ μr is a generator, we will assume that γ · t = ζ−1t and similarly
γ · dt = ζ−1 dt .

In this case, V is defined by a projective module over B with a compatible μr -action, and ∇
commutes with this action. By shrinking as necessary, we may assume that the module is free
over U , say with basis e = {e1, . . . , en}, and the μr -action is appropriately diagonalized [11,
Proposition 3.15] so that

γ · ej = ζpj ej ,

for some pj which satisfy 0 � pn � · · · � p1 � r − 1. Take 1 � jk < jk−1 < · · · < j1 = n

such that if ji+1 + 1 � j � ji , then pj = pji
; set mi := pji

and αi := mi/r . The μr -invariants
of the submodule generated by ej is generated by tpj ej . Hence π∗V has a basis f = {f1 :=
tp1e1, . . . , fn := tpnen} or

f1 = tmk e1, . . . , fjk
= tmk ejk

, fjk+1 = tmk−1ejk+1, . . . ,

fjk−1 = tmk−1ejk−1 , . . . , fj2+1 = tm1ej2+1, . . . , fn = tm1en.

More generally, if mi−1 + 1 � l � mi , then π∗(V ⊗OX
N⊗−l) is spanned by

f1, . . . , fji
, sfji+1, . . . , sfn.

Then the subspace Vi of Vx is spanned by f1(x), . . . , fji
(x). This describes the filtration (4.1).

Now, suppose that, with respect to the basis e, ∇ has the connection matrix ω = (ωij ) dt , so
that

∇ej =
n∑

i=1

ωij ei dt.

Then comparing the two expressions

∇γ · ej = ζpj

n∑
i=1

ωij ei dt, γ · ∇ej =
n∑

i=1

ζpi−1(γ · ωij )ei dt,

we find that γ · ωij = ζpj −pi+1ωij . Hence ωij is of the form

ωij =
{

tpi−pj −1νij if pi > pj ,

stpi−pj −1νij if pi � pj ,

for some νij ∈ A.
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The change of basis matrix, from e to f , is g = diag(tp1, . . . , tpn) and so the connection
matrix with respect to f is g−1ωg + g−1 dg, the (i, j)-entry of which is⎧⎪⎪⎨⎪⎪⎩

νij

dt

t
= 1

r
νij

ds

s
if pi > pj ,

νij

s dt

t
+ δijpi

dt

t
= 1

r
(sνij + δijpi)

ds

s
if pi � pj .

One sees immediately that this gives a well-defined logarithmic connection D on E∗ and yields
the following expression for the residue at x

(Resx D)ij =
{

1
r
νij (x) if pi > pj ,

δij
pi

r
if pi � pj .

From this, it is straightforward to verify that D is, in fact, a parabolic connection.
In the other direction, suppose we are given a parabolic connection (E∗,D). Let f1, . . . , fn

be a local frame and suppose Vx has a flag (4.1) with weights αi = mi/r , 1 � i � k. Then the
corresponding bundle on X is represented over U by the free B-module with basis

e1 := f1 ⊗ t−mk , . . . , ejk
:= fjk

⊗ t−mk , ejk+1 := fjk+1 ⊗ t−mk−1, . . . ,

ej2 := fj2 ⊗ t−m2, ej2+1 := fj2+1 ⊗ t−m1, . . . , en := fn ⊗ t−m1 .

Now, reversing the argument above, we see without difficulty that the induced connection on
the B-module has no poles and is compatible with the μr -action. Hence we obtain a connection
on X.

Observe that in the above how we go from a connection on X to a parabolic connection and
back is essentially via a “change of basis” operation. When realized as such, it is clear that the
two operations are inverse to each other.

A morphism ϕ : (V,∇V ) → (W,∇W ) is a morphism ϕ : V → W which commutes with the
respective connections, i.e., ∇W ◦ϕ = (ϕ⊗1Ω1

X
)◦∇V . In local frames, this means that the matrix

for ϕ satisfies the same relation with the respective connection matrices. Let (E∗,DE), (F∗,DF )

be the corresponding parabolic connections. Then, as we saw, the connection matrices for DE

and DF are obtained by changes of basis on each of V and W from the matrices for ∇V and
∇W ; the matrix for π∗ϕ will be obtained from these same changes of basis, so the commuta-
tion property will be preserved and we get a morphism of connections. Again, the process is
reversible. �

The following is immediate from the proposition, Lemma 4.1 and Theorem 3.2.

Corollary 4.3. A line bundle L on X admits a connection if and only if degXL = 0.

5. A condition for the existence of a connection

In this section X will be an irreducible smooth complex projective curve, Z ⊆ X a reduced
divisor, s ∈ H 0(X,OX(Z)) a section defining Z, r ∈ N and X = XOX(Z),s,r the associated root
stack. We will further assume that either g � 1 or m > 1, so as to be able to apply Corollary 2.6.
As before, G is a reductive complex algebraic group.

The following theorem is a generalization of a criterion of Weil and Atiyah [1,26], for the
existence of a holomorphic connection on a holomorphic vector bundle over a compact Riemann
surface
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Theorem 5.1. A principal G-bundle E on X admits a connection if and only if for any reduction
to a Levi factor L of a parabolic subgroup of G, say F is an L-bundle with F ×ι G ∼= E , and
any character χ : L →C×, the associated line bundle M = Mχ := F ×χ C satisfies

degXM = 0.

Proof. Suppose first that E admits a connection and let F be a reduction of G to a Levi sub-
group L and χ : L → C× a character. Then by Lemmata 1.10, 1.11 and 1.9, Mχ on X admits a
connection. Hence degXMχ = 0 by Corollary 4.3.

We now prove the converse. Assume that E satisfies the condition of the theorem. We choose
a Galois cover p : Y → X as in Corollary 2.6. Then we obtain a surjective étale morphism
p : Y → X, so that Y is an atlas for X. Corresponding to the morphism p is a G-bundle Ep which,
since X = [Γ \Y ], comes with a compatible Γ -action. A reduction of the structure group E to
a Levi subgroup H corresponds to a Γ -invariant reduction of Ep to H , and conversely, so the
hypotheses of the following lemma are satisfied.

Lemma 5.2. Let E be a Γ -linearized principal G-bundle over Y such that for every Levi sub-
group H ⊆ G, every Γ -invariant holomorphic reduction F of E to H and every character
χ : H → C×, one has

degF ×χ C = 0.

Then E admits a Γ -invariant connection.

Except for the Γ -invariance of the connection, this is the statement of [6, Lemma 4.2]; that the
existence of one connection implies the existence of a Γ -invariant one is proved by an averaging
argument on the previous page of the same paper.

Now, the existence of a Γ -invariant connection on Ep implies that there is a Γ -invariant
splitting of the Atiyah sequence for Ep. Since the question is now framed in terms of the existence
of a section of an appropriate sheaf over Y , such a splitting descends to a splitting of the Atiyah
sequence for E and we conclude by Lemma 1.13. �

Let E be a principal G-bundle over X. Consider the short exact sequence

0 → Ω1
X ⊗ adE → Ω1

X ⊗ AtE
μ−→ Ω1

X ⊗ TX= End(TX) → 0

obtained by tensoring the Atiyah sequence associated to E with Ω1
X

. It produces the exact se-
quence

0 → Ω1
X ⊗ adE → μ−1(IdTX ·OX)

μ−→ IdTX ·OX = OX → 0.

There is a natural bijective correspondence between the splitting of this exact sequence and the
above Atiyah sequence associated to E . In [6], connections on parabolic principal bundles were
defined to be the splittings of the exact sequence in the parabolic context given by this exact
sequence.

6. Tensor functors

Let X be a scheme over an arbitrary field k, G an affine group scheme over k and E a G-bundle
over X. Then the assignment taking a representation ρ : G → GL(V ) to the associated vector
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bundle E ×ρ V defines a functor FE : G-mod →VectX, where G-mod is the category of finite-
dimensional representations of G and one observes that FE satisfies the following properties:

(i) FE is k-additive;
(ii) FE is a tensor functor in the sense that it commutes with the formation of tensor products

(in each of the respective categories), and with the natural isomorphisms of functors which
give the associativity and commutativity of the tensor product in each category;

(iii) FE takes the trivial 1-dimensional representation to the trivial line bundle;
(iv) FE takes an n-dimensional representation to a rank n vector bundle.

Following a Tannakian philosophy, M.V. Nori was able to see that any functor G-mod →VectX

satisfying these conditions in fact comes from a G-bundle over X [22, §2].
The approach to generalizing the notion of a parabolic vector bundle to that of a parabolic

principal bundle taken by [3] is to view a G-bundle in this sense. Thus, one defines a parabolic
principal bundle as a functor G-mod → ParVectD,r(X), for some r ∈ N, which satisfies con-
ditions (i)–(iv) above [3, Definition 2.5]. One will recall that the original definition [18] of a
parabolic structure (on a vector bundle over a smooth curve) consisted of a flag of subspaces of
the fibre over a parabolic point x, together with a set of weights in [0,1). While a flag has a
clear G-bundle analogue in terms of an element in a generalized flag manifold, it was much less
obvious what the correct generalization for a set of weights should be. The definition in [3] was
meant to overcome this difficulty.

We now see that the tensor functor approach to parabolic principal bundles coincides with our
approach via root stacks.

Proposition 6.1. The category of G-bundles on the root stack X is equivalent to the category of
tensor functors G-mod →ParVectD,r (X).

Proof. The first thing to recall is that the equivalence of VectX and ParVectD,rX is a tensor
functor, so satisfies (ii)–(iv); it obviously satisfies (i), and it is clear that it preserves rank and that
the trivial bundle on X corresponds to the trivial parabolic vector bundle on X. We will also note
that if f : U →X is an étale morphism, then the functor Rf :VectX→ VectU given by

V �→ Vf

also has the same properties, virtually by definition.
Suppose we are given a principal bundle E on the root stack X. Then the associated vec-

tor bundle construction of Section 1.4 will give a functor FE : G-mod → VectX satisfying the
conditions above. Composing with the equivalence VectX

∼−→ParVectD,r (X) give a parabolic
principal bundle in the sense [3].

Suppose we are given a functor F : G-mod → ParVectD,rX satisfying (i)–(vi) above. Then
given an étale morphism f : U → X, we may consider the composition

G-mod
F−→ParVectD,rX

∼−→ VectX
Rf−→ VectU,

which we will denote by Ff. This will satisfy (i)–(vi) and hence determines a principal bundle
EF over U . Now, given a diagram (1.1), one obtains a diagram of categories and functors
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VectV

k∗G-mod

Fg

Ff

VectU.

In this situation, [22, Proposition 2.9(a)] provides canonical isomorphisms Ef
∼−→ k∗Eg. Be-

cause of the canonical nature of these isomorphisms, the compatibility condition (1.5) is satisfied.
Thus F defines a principal G-bundle over X. It is clear that these constructions are inverses of
each other, as it is a question of seeing that this is the case at each f ∈ ObX. �
7. Parahoric torsors

7.1. Parahoric subgroups

We will assume that G is semisimple and fix a maximal torus T and a Borel subgroup B

containing T . Let A := C[[z]] be the ring of formal power series and K := C((z)) = A[z−1] its
quotient field (the ring of formal Laurent series). One has a quotient map A → C, which yields
an evaluation map ev : G(A) → G(C). The Iwahori subgroup I of G(K) is defined to be

I := ev−1(B) = ev−1(B(C)
)
.

A parahoric subgroup P of G(K) is one which contains a G(K)-conjugate of I . It is a theorem
of [13] that any such subgroup P is the group of A-points for a uniquely defined smooth group
scheme over A which, at the risk of poor notation, we will also call P .

Let g denote the Lie algebra of G, let Φ be the root system for G (with respect to T ) and
for α ∈ Φ , let gα denote the corresponding root space and Uα ⊆ G the root group. We will fix
non-zero xα ∈ gα .

Let θ ∈ tR = Y(T ) ⊗Z R and consider the subgroup

Pθ := 〈
T (A),Uα

(
zmα(θ)A

): α ∈ Φ
〉
, (7.1)

where mα(θ) = −α(θ)� when we consider α as an element of t∗
R

. Such a subgroup is parahoric
in the above sense and any parahoric subgroup containing I is of the form Pθ for some θ (though
such a θ is clearly not unique). In what follows, we will typically take θ ∈ Y(T ) ⊗Z Q or, when
r ∈N is fixed, in Y(T ) ⊗Z

1
r
Z.

For such a θ , [9, §2.2] gives the following description of the associated parahoric Lie algebra.
For λ ∈R, we will set

gθ
λ := {

ξ ∈ g: [θ, ξ ] = λξ
}
.

Note that gθ
0 ⊆ g is the centralizer subalgebra of θ and that t ⊆ gθ

0. For i ∈ Z, we set

gθ (i) :=
∑

λ�−i

gθ
λ.

Then we define

℘θ :=
{∑

ξiz
i ∈ g(K): ξi ∈ gθ (i)

}
.

i∈Z
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It is not hard to see that this is the same as

℘θ = t(A) ⊕
∑
α∈Φ

gα

(
zmα(θ)A

)
,

which is what one would expect from the description in (7.1).
An alternative description given in [9] is to consider the (finite-dimensional) vector spaces

g(K)θλ :=
{∑

i∈Z
ξiz

i ∈ g(K): ξi ∈ gθ
λ−i

}
,

for λ ∈R, which we will call the weight λ piece of g(K). Then ℘θ is the sub-algebra with weights
� 0. In particular, the weight zero piece

g(K)θ0 :=
{∑

i∈Z
ξiz

i ∈ g(K): ξi ∈ gθ−i

}
,

is a finite-dimensional sub-algebra of ℘θ and is isomorphic to a reductive subalgebra of g con-
taining t.

7.2. Parahoric group schemes and torsors

Let X be a smooth (irreducible) curve. We use the notation of Section 3.3. A group scheme G
will be called a parahoric Bruhat–Tits group scheme if there exists a finite set Z ⊆ X such that
for each x ∈ Z, there is some θx ∈ t = Y(T ) ⊗Z R such that

G|X\Z ∼= (X \ Z) × G, and G|Dx
∼= Pθx ,

for each x ∈ Z. If θ := {θx : x ∈ Z}, then this group scheme will be written Gθ . The stack of
Gθ -torsors over X will be denoted

BunGθ
X.

For simplicity, we will only be considering the case when Z = {x} is a singleton, in which case
we write θ for θx and for θ .

Let X and x ∈ X be as above. Let s ∈ H 0(X,OX(x)) be a section vanishing (only) at x and
fix r ∈N. Let X := XOX(x),s,r be the associated root stack.

Fix a local type τ for G-bundles over X (i.e., an equivalence class of representations μr → G)
and choose a representative ρ. We may assume that ρ is the restriction of a cocharacter
θ :Gm(L) → T (L) to μr (L) ⊆ Gm(L) so we may associate to τ an element

θ = θτ ∈ Y
(
T (L)

) = Y
(
T (Kx)

) ⊗Z

1

r
Z.

Proposition 7.1. Assume that one of the following three conditions holds for X(L,r,s):

• g � 1,
• g = 0, and the support of the divisor for s has cardinality at least three, and
• g = 0, and the divisor for s is of the form d(x + y), where x and y are distinct points.

Then there is an equivalence of stacks

Bunτ
G X

∼−→ BunGθ
X.
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Proof. We may choose a Galois cover p : Y → X as in Corollary 2.6 so that we have Bunτ
G X∼=

Bunτ
Γ,G Y from Proposition 3.4. But Bunτ

Γ,G Y ∼= BunGθ
X, by [4, Theorem 5.3.1]. �

7.3. Parahoric connections

7.3.1. Local connections: The residue condition
Fix θ ∈ tR and consider the parahoric subgroup Pθ of G(K). Then [9, §2.3] considers the

subspace

Aθ := ℘θ

dz

z

of logarithmic parahoric or logahoric connections of the space g(K)dz, of meromorphic con-
nections over the trivial G-bundle over the formal disc. Observe that the space of such connec-
tions only depends on the Lie algebra ℘θ , rather than θ itself.

We will want to restrict this definition somewhat for our purposes by imposing a condition
analogous to the second condition in (4.2). Let ω̃ dz/z be a logahoric connection (for the choice
of θ ), with ω̃ ∈ ℘θ . We may consider its weight zero piece,

ω̃0 ∈ g(K)θ0 .

Definition 7.2. We will say that a logahoric connection satisfies the residue condition if its weight
zero piece is precisely θ . We will denote by ARes

θ the space of logahoric connections satisfying
the residue condition.

This definition very much depends on the data of θ ∈ tR.

Lemma 7.3. A logahoric connection ω̃ dz/z satisfies the residue condition if and only if

ω̃ ∈ θ + t(zA) +
∑

α(θ)∈Z
gα

(
z1+mα(θ)A

) +
∑

α(θ)/∈Z
gα

(
zmα(θ)A

)
.

Let B := A[t]/(tr − z) = C[[t]] and let L = C((t)) be its quotient field. We consider a trivial
G-bundle E = D̂×G over D̂ := Spec B with a compatible μr -action, the μr -action on D̂ coming
from that on B , where it is given by γ · t = ζ−1t , with γ ∈ μr a fixed generator. As above, this
may be realized via a homomorphism θ : μr → G(L), which we may assume factors through
T (L) ⊆ G(L). In fact, we may think of θ as the restriction of a cocharacter in Y(T (L)), which
we lazily also denote by θ . We have

Y
(
T (L)

) = Y
(
T (K)

) ⊗Z

1

r
Z ⊆ Y

(
T (K)

)
and so we will think of θ as an element of Y(T (K)) ⊗Z Q.

Proposition 7.4. Logahoric connections satisfying the residue condition for θ (i.e., elements of
ARes

θ ) are in a one-to-one correspondence with μr -connections on the trivial G-bundle over D̂,
for which the μr -action is given by the homomorphism θ .

Proof. A connection ω on E is given by a g-valued 1-form on W ; it may be written
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ω = ω̃ dt =
(

l∑
i=1

ωihi +
∑
α∈Φ

ωαxα

)
dt,

for some ωi,ωα ∈ B , where h1, . . . , hl is a basis of t.
The condition for ω to be μr -invariant (cf. proof of Proposition 4.2) is that γ ∗ω = ω, or

Ad θ(γ )(γ · ω̃)(γ · dt) = ω̃ dt. (7.2)

For 1 � i � l, this translates to

ωi(t) dt = ζ−1ωi

(
ζ−1t

)
dt,

and it follows that

ωi(t) dt = νi(z) dz

for some νi ∈ A. For α ∈ Φ , (7.2) implies

ωα(t) dt = α
(
rθ(γ )

)
ζ−1ωα

(
ζ−1t

)
dt = ζ rα(θ)−1ωα

(
ζ−1t

)
dt.

In this case, one sees that

ωα dt =
{

να dz, if mα(θ) = −α(θ), i.e., α(θ) ∈ Z,

t rα(θ)zmα(θ)−1να dz, if α(θ) + mα(θ) > 0,

for some να ∈ A, where one recalls that mα(θ) = −α(θ)�. Therefore,

ω =
(

l∑
i=1

zνihi +
∑

α(θ)∈Z
zναxα +

∑
α(θ)/∈Z

t rα(θ)zmα(θ)ναxα

)
dz

z
.

Now, using the change of frame tθ , the connection form becomes

Ad t−θ (ω) + t−θ d
(
tθ

) =
(

θ +
l∑

i=1

zνihi +
∑

α(θ)∈Z
z1+mα(θ)ναxα +

∑
α(θ)/∈Z

zmα(θ)ναxα

)
dz

z
,

and from Lemma 7.3, we find that the induced connection lies in ARes
θ . Conversely, a loga-

horic connection satisfying the residue condition is of the above form, and reversing the process
(via the change of frame tθ ), we recover a connection on the trivial G-bundle over W with no
poles. �
7.3.2. Global connections

Let E → X be a Gθ -torsor. This may be given by a G-bundle E|X\x over X \ x, a parahoric

torsor E|Dx
over Dx and an isomorphism η : E|X\x |D×

x

∼−→ E|Dx
|
D

×
x

(the reader may wish to
have another look at the diagram (3.2)). We define a connection on E to be a pair consisting of
a connection ω0 on the G-bundle E|X\x and a logahoric connection ωx on E|Dx

satisfying the
residue condition such that

ω0|D×
x

= η∗ωx |D×
x
.

Proposition 7.5. Let E be a G-bundle on X and let E be the corresponding parahoric bundle
on X. Then there is a one-to-one correspondence between connections on E and connections
on E.
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Proof. It is clear that if we begin with a connection ω on a G-bundle E over X, then we can
take restrictions to (X \ x) ×X X ∼= X \ x and to Dx ×X X ∼= D̂, the latter being a connection
compatible with the μr -action, and hence by Proposition 7.4, yields a logahoric connection on
the parahoric torsor over Dx . The isomorphism over D×

x comes from the fact that ω is defined
over all of X.

Conversely, given ω0,ωx as in the definition, the pullback of ωx to E |Dx×XX gives a well-
defined connection (again by Proposition 7.4). The isomorphism η gives patching data over
E |

D
×
x ×XX

, and so we get a connection over E . �
One cheaply obtains the following.

Corollary 7.6. Let E → X be a Gθ -torsor. Then it admits a connection in the above sense if and
only if the corresponding G-bundle on X satisfies the condition of Theorem 5.1.
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